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Introduction

Among anticancer agents, drugs targeting tubulin or
microtubules are among the most, if not the most, effective
class of agents. The list of compounds which bind to tubulin or
the microtubules is large and continues to expand. The
overwhelming majority are natural products, and their
chemical structures are remarkably diverse. Clinical drug
development saw the introduction of the vinca alkaloids in the
1950s. Initially represented by vincristine (oncovin), this class
was eventually expanded to include vinblastine (velban) and
vinorelbine (navelbine). Although the vinca alkaloids were
shown to be useful in a wide range of malignancies, including
both leukemias and solid tumors, interest in developing new
agents targeting microtubules declined, until the introduction
of paclitaxel (taxol) into clinical oncology. Arguably the most
effective agent introduced since cisplatin, paclitaxel's
remarkable activity in a broad range of malignancies ignited
intense interest in tubulin and microtubules as
chemotherapeutic targets. This review will attempt to cover a
broad range of agents targeting tubulin, which have
collectively been referred to as microtubule-targeting agents
(MTAs) or microtubule-interactive agents (MIAs). We will
attempt to provide a brief, but hopefully helpful, background
and then devote the rest of the chapter to describing and
contrasting these compounds, placing special emphasis on
paclitaxel. A large number of excellent recent reviews covering
the different aspects included herein are available [1,2,3e 4e].
The reader is encouraged to consult these for more depth.

Tubulin and microtubules: A brief primer
Microtubules are cytoskeletal protein polymers critical for
cell growth and division, motility and signaling. The basic
subunit of the microtubule is 'tubulin, a heterodimer
composed of two related polypeptides, a- and B-tubulin.
Microtubules are not simple equilibrium polymers, they
exhibit complex polymerization dynamics, important for
many microtubule-dependent processes in cells.

Microtubules are polymers built by the self-association of
o/B-tubulin dimers. The polymerization process involves
two types of contacts between tubulin subunits: head-to-tail
binding of dimers results in protofilaments that run along
the length of the microtubule, and lateral interactions

between parallel protofilaments complete the microtubule
wall. Addition of tubulin monomers can occur at either end
of a microtubule. The addition of tubulin monomers is
reversible and noncovalent, but requires energy. GTP is
bound ‘exchangeably to tubulin monomers, and is
irreversibly hydrolyzed as a tubulin monomer is added to a
microtubule. Tubulin monomers can be removed from
either end of a microtubule, a process which does not
require energy. This ability to add and remove monomers
from either end is very important, because it renders
microtubules intrinsically dynamic.

Microtubule dynamics can be manifested as ‘treadmilling’
and 'dynamic instability’. ‘'Treadmilling’ refers to the net
growth of microtubules at one end and the net shortening at
the opposite end. The net effect of 'treadmilling' is to
effectively move individual tubulin subunits along the
length of a microtubule. Thus, for example, a tubulin
subunit located in the center of a microtubule will effectively
move to one end of the microtubule (the shortening end) as
one end grows and the other shortens. 'Dynamic instability’
refers to the stochastic switching between an extended phase
of growth and an extended shortening phase at either end of
a microtubule.

Because of their dynamic nature, microtubules are
constantly exchanging their tubulin subunits with the
pool of soluble tubulin. In interphase, exchange of the
'interphase microtubule network' occurs with a half-life of
~3 min to several hours. By contrast, the microtubules
which comprise the mitotic spindle are 10 to 100-fold
more dynamic. They exchange their tubulin with half-
times of about 15 s [5-8]. These differences in dynamics
reflect the differing functions. The dynamics of spindle
microtubules must be rapid so as to build the spindle and
move chromosomes accurately in a short time. Dynamic
instability is required to build the spindle and establish
attachments to kinetochores. Once attached, treadmilling
provides tension and allows for movement of
chromosomes. In contrast, the less dynamic interphase
microtubule network provides a more stable framework
on which intracellular trafficking can occur.

In interphase cells, microtubules are organized into a single
array, with their minus ends associated with the microtubule
organizing center (MTOC), located near the nucleus in the
center of the cell. Their plus ends radiate towards the cell
periphery near the plasma membrane, giving the cell a defined
polarity. The microtubule-based motor proteins kinesins and
dyneins utilize this polarity, by moving to the plus and minus
ends of microtubules, respectively. Thus, microtubules provide
the cell with a system for the directional flow of information. In
addition, because of their abundance, microtubules provide a
large surface area that can be used for protein-protein
interactions.

In addition to the tubulin monomers, other proteins, most
notably microtubule-associated proteins or MAPs, are
essential for the formation of microtubules.
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Agents targeting tubulin and microtubules
Agents which target tubulin and microtubules interfere
with the function of the mitotic spindle, and block cells at
the metaphase/anaphase junction  [9,10ee].  For
convenience, they are often divided into two groups:
those that destabilize microtubules (see Figure 1) and
those that stabilize microtubules (see Figure 2).
Destabilizing agents include: (1) the vinca alkaloids,
(vincristine, vinblastine and vinorelbine); (2) colchicine;
(3) nocodazole; (4) cryptophycins, and the (5)
hemiasterlins. Stabilizing agents include: (1) the taxanes
(paclitaxel and docetaxel); (2) the epothilones (epothilone
A and B); (3) discodermolide; (4) the eleutherobins/
sarcodictyins, and (5) laulimalide.

The division into these two major classes is based on their
effects on microtubule polymerization and the mass of
microtubule polymers. At high drug concentrations,
destabilizing agents decrease the mass of cellular
microtubules and inhibit tubulin polymerization, while
stabilizing agents increase the polymer mass, stabilize
microtubules and induce formation of microtubule bundles
in cells. However, it is now recognized that at low
concentrations, the effects of destabilizing and stabilizing
agents are very similar. Thus, at low drug concentrations,
destabilizing agents stabilize microtubules and suppress
microtubule dynamics with little or no accompanying
microtubule depolymerization; while stabilizing agents
suppress microtubule dynamics without increase in the
polymer mass or formation of microtubule bundles (for
review see [3] ).

Destabilizing agents

Vinca alkaloids

At nanomolar concentrations, the vinca alkaloids suppress
both dynamic instability and treadmilling, without
affecting the microtubule polymer mass [11,12e,13]. This
suppression  of  microtubule  dynamics  occurs
preferentially at plus ends, while the rates at minus ends
are unchanged. Thus, binding of approximately one
molecule of vinblastine per microtubule results in 50%
inhibition of treadmilling with a negligible effect on
microtubule polymer mass.

Vinblastine binds preferentially to tubulin monomers.
Binding to tubulin monomers inhibits microtubule
assembly, indirectly resulting in depolymerization and
reduction in the microtubule polymer mass. Vinblastine can
also bind directly to microtubules, without first binding a
soluble tubulin monomer. Binding to microtubules can
occur at either high affinity sites located near the plus ends
of microtubules, or at low affinity sites located throughout
the microtubule surface. Binding to the high affinity sites is
likely responsible for the stabilizing effect on microtubule
dynamics, seen at low drug concentrations. Binding to the
low affinity sites likely results in depolymerization of
microtubules [14-16]. Both of these effects may be important
for cell proliferation, and can manifest differently. Thus the
block or slowing of mitosis at the metaphase/anaphase
transition seen after the addition of vinblastine may result
from either: (a) microtubule depolymerization at high drug
concentrations or (b) suppression of microtubule dynamics.
In the former, vinblastine binding to tubulin monomers

results in inhibition of microtubule assembly, so that
following the dissolution of the nuclear envelope the mitotic
spindle is not formed. In the latter, one sees morphologic
changes characteristic of a blocked spindle [9,13].

Colchicine

As with the vinca alkaloids, colchicine's effect is
dependent on drug concentration. At low concentrations
colchicine also inhibits tubulin dynamics without affecting
microtubule polymer mass. At higher concentrations, it
inhibits microtubule polymerization, so that the mitotic
spindle dissociates or is not formed. However, unlike the
vinca alkaloids, colchicine cannot bind directly to
microtubule ends, or does so only with very poor affinity.
It does, however, bind soluble tubulin, and is in turn
incorporated at microtubule ends, with a resultant
attenuation or inhibition of microtubule polymer
elongation [17,18,19]. Colchicine is not widely used for
cellular studies because its binding to tubulin is slow and
not easily reversible.

Nocodazole

Nocodazole binds in the colchicine-binding domain of
tubulin and shares with colchicine the property of
increasing the GTPase activity of tubulin in the absence of
polymerization (for review see [1]). This property is
distinct from the drugs that bind at the vinca-binding
domain of tubulin that in general suppress GTPase
activity in parallel with inhibition of microtubule
polymerization. Nocodazole has largely replaced
colchicine and colcemid in studies of microtubules, in part
because of colchicine's poor reversibility. From the point
of view of chemotherapeutics, however, this property may
prove valuable. It will be interesting to follow the
development of a chemotherapeutic agent targeting the
‘colchicine binding site’.

Cryptophycins

Cryptophycins are another recently-discovered class of
remarkably potent natural products that are active against
human solid tumors in murine xenografts. Cryptophycins
bind tightly to tubulin, and they inhibit tubulin
polymerization at high drug concentrations, while they
slow or block mitosis at picomolar concentrations [20].
Cryptophycin 1, in particular, binds at or near the vinca
binding site on tubulin, suppressing microtubule
dynamics more potently than vinblastine or paclitaxel
without inducing net microtubule depolymerization
[21,22].

Hemiasterlins

Hemiasterlin A and hemiasterlin B are newly isolated
cytotoxic tripeptides from the sponge genus Auletta with
potential as antitumor drugs. At the nanomolar
concentrations at which they are cytotoxic, the peptides
induce arrest in mitotic metaphase. Hemiasterlin A
produces abnormal mitotic spindles like those produced by
paclitaxel, nocodazole and vinblastine at low concentrations.
At high concentrations hemiasterlin A causes microtubule
depolymerization  [23]. Hemiasterlin inhibits non-
competitively the binding of vinblastine to tubulin, stabilizes
the colchicine binding activity of tubulin, and induces the
formation of stable tubulin oligomers even at low drug
concentrations [24].
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Figure 1. Microtubule-destabilizing agents.
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Figure 2. Microtubule-stabilizing agents.
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Stabilizing agents

Taxanes

Paclitaxel (taxol) is the prototype of microtubule-stabilizing
agents. Paclitaxels' antitumor activity in vitro was first
described in 1971, following its isolation from extracts of the
bark of the pacific yew tree Taxus brevifolia [25e]. Paclitaxel,
however, despite its novel structure and antitumor activity,
generated only modest enthusiasm for clinical development,
until the elucidation of its unique mechanism of action as a
microtubule-stabilizer [26e#,27]. In cells, paclitaxel binds
directly to microtubules. In vitro, paclitaxel binds reversibly
to microtubules with high affinity [28]. Paclitaxel can also
bind soluble tubulin subunits, but with a markedly reduced
affinity [28,29,30]. Direct photoaffinity labeling has shown
preferential paclitaxel binding to the B-tubulin subunit of
microtubules [3les]. The paclitaxel binding site on
microtubules is specific, and distinct from the binding site of
other drugs as evidenced by the fact that paclitaxel binding
does not inhibit the binding of other MT-destabilizing
drugs, including vinblastine, colchicine, or podophyllotoxin
[32,33].

Like other microtubule-stabilizing agents, paclitaxel
enhances microtubule polymerization in vitro, promoting
both the nucleation and elongation phases of polymerization
and reducing the soluble tubulin concentration at steady
state [32, 33,34]. The microtubules formed in the presence of
paclitaxel are very stable [32,33,34]. Paclitaxel effects on
microtubule dynamics vary with the concentration of
paclitaxel. Low paclitaxel concentrations can significantly
reduce the rate and extent of microtubule shortening at plus
ends, without significantly affecting microtubule minus
ends [35] [36]. Similar to low concentrations of
depolymerizing agents, these concentrations act principally
by suppressing microtubule dynamics, leading to arrest at
the metaphase/anaphase transition in a large majority of
cells. All of these changes occur without a significant
increase in the microtubule polymer mass, consistent with a
predominant effect on microtubule dynamics. At
intermediate concentrations of paclitaxel, the rates of
growing and shortening are suppressed equally, resulting in
a ‘pause’, while at high concentrations, the microtubule
polymer mass increases as tubulin is recruited into
microtubules. At these high concentrations, paclitaxel
treatment leads to the appearance of large and dense asters
containing prominent bundles of stabilized microtubules. It
is interesting that while at high concentrations paclitaxel
binding to microtubules saturates at a ratio of 1 mole of
paclitaxel per mole of tubulin, the ‘occupancy’ rate at lower
concentrations is substantially less. Thus, at low paclitaxel
concentrations (10 to 100 nanomolar), only one paclitaxel
molecule is bound every 270 tubulin dimers. Since mitotic
arrest is observed under these conditions, it is assumed that
microtubule shortening occurs until a bound paclitaxel
molecule is reached, at which point, shortening stops.

While the principal cellular target for paclitaxel is the
tubulin/microtubule system, an increasing number of non-
microtubule effects have also been reported. Numerous
studies have demonstrated activation of a variety of signal
transduction pathways following the addition of paclitaxel.
However, these effects must be interpreted with caution.
Some effects may be cell line-specific; while others can be

demonstrated only at high concentrations of paclitaxel. The
Jatter often exceed the concentrations that can be achieved
clinically, and are thus of uncertain significance [37¢]. What
is less clear is the extent to which these effects are
independent of microtubule binding and the resultant
mitotic arrest. Putting aside these considerations, one can
summarize the myriad of effects on signal transduction
pathways observed following paclitaxel treatment as
follows: (1) Paclitaxel activates c¢Jun N-terminal
kinase/stress activated protein kinase (INK/SAPK) through
both Ras and apoptosis signal regulating kinase (ASKI)
pathways. Both dominant negative Ras and dominant
negative Askl prevent JNK activation. The activation
requires microtubule binding. JNK activation does not occur
in cell lines harboring mutant tubulins which are insensitive
to paclitaxel [38]. Others have suggested that paclitaxel-
induced gene expression and cell death are both mediated
by the activation of JNK/SAPK [39]. (2) Paclitaxel has been
shown to phosphorylate She, and in paclitaxel-treated
murine macrophages formation of Shc-/Grb2 complexes
have been demonstrated [40]. (3) Paclitaxel treatment has
been shown to activate Raf-1 [3840-43]. (4) Paclitaxel
activates extracellular signal regulated kinase (ERK) [38]. 5)
Paclitaxel treatment results in activation of p38 in human
breast cancer cells [44].

Numerous studies have also reported the effect of paclitaxel
on proteins involved in apoptosis [41ee,42,45,46,47-49¢,500].
Together with early evidence indicating that Bcl-2 could be
inactivated by phosphorylation, the observation that Bcl-2
was phosphorylated following  paclitaxel treatment
provided a potential explanation for how paclitaxel could
bring about apoptosis. Serine 70 in Bcl-2 has been identified
as one of the critical residues; however, the requirement of
Bcl-2 phosphorylation for paclitaxel cytotoxicity is still in
dispute [48¢]. Studies are underway to determine the
kinase(s) responsible for these effects. It must be stressed,
however, that this effect, as well as other paclitaxel effects
may be simply a reflection of paclitaxel-induced mitotic
arrest. Ample evidence exist to indicate that serine protein
phosphorylation of numerous proteins occurs during
meiosis and mitosis. Consequently, arresting cells at this
stage in the cell cycle may result in widespread serine
protein phosphorylation [37e].

Paclitaxel can cause both mitotic arrest and apoptotic cell
death [51]. Paclitaxel can also cause cell death independent
of apoptosis. Paclitaxel-induced cell death may be secondary
to its interaction with the tubulin/microtubule system, or
may occur via pathways that are independent of cell cycle
arrest. The bulk of the evidence suggests that cell death
following paclitaxel is a consequence of mitotic arrest.
However, at least in some cells, cell death can occur
independent of mitotic arrest. In A549 cells, for example,
paclitaxel-mediated cell death has been proposed to result
from two different mechanisms. At paclitaxel concentrations
below 9 nM, apoptosis occurs without a G,/M block, while
at higher concentrations, cell death follows mitotic arrest
[43].

Because many of the paclitaxel effects reported to date are
likely to be a consequence of paclitaxel's interaction with
microtubules and the resultant mitotic arrest, it is likely that
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these effects will be observed with other MIAs. However,
one effect that appears to be paclitaxel-specific is its ability
to mimic LPS activity [52]. Epothilone B, for example, which
like paclitaxel stabilizes microtubules, does not show
paclitaxel-like endotoxin activity [53]. Paclitaxel has also
been shown to activate ‘early-response genes’, including
transcription  factors and enzymes that modulate
inflammation and apoptosis [54]. Moreover, it has been
concluded that these effects are independent of microtubule
stabilization since a high concentration of paclitaxel (10 uM)
was used, which is much higher than the concentration
needed for microtubule stabilization. One must interpret the
significance of these observations cautiously, since both the
LPS-effect and the ‘early-response gene’ activation have
been observed only at very high paclitaxel concentrations,
which are not clinically relevant.

Other stabilizing agents

The clinical successes of the taxanes, paclitaxel and the
semisynthetic derivative docetaxel (taxotere), has stimulated
a worldwide search for new agents with a similar mode of
action but improved characteristics. The low aqueous
solubility of paclitaxel and the development of clinical drug
resistance, mediated by both the overexpression of P-
glycoprotein (Pgp) and the presence of B-tubulin mutations
[55ee], are factors that could potentially hamper its clinical
applicability. This search has resulted in the identification of
four non-taxane chemical classes of natural products: the
soil bacteria-derived epothilones A and B [56e], the marine
sponge-derived discodermolide [57¢,58], the coral-derived
eleutherobins/sarcodictyins [59e,60] and the marine sponge-
derived laulimalide and isolaulimalide [61e].

These four classes of natural products stabilize microtubules
and three out of the four classes have been shown to
competitively inhibit the binding of paclitaxel to tubulin
polymers (for Jaulimalide such data do not yet exist),
indicating overlap of binding sites [56-,57-,58,62,630].

Epothilones

The epothilones A and B were first discovered in 1993 (for
review see [64e]). These compounds were isolated from the
cellulose-degrading myxobacterium Sorangium  cellulosum
(Myxococcales) strain So ce90, first found in soil collected
from the banks of the Zambesi river in South Africa, and
were initially found to exhibit a narrow antifungal spectrum
against the fungus Mucor hemialis only [65]. Based on this
finding, the epothilones were first tested as potential
antifungal and pesticide agents, but field experiments
proved the epothilones to be too phytotoxic. In the mean
time, others had independently isolated epothilones A and B
and furthermore they discovered that these compounds kill
tumor cells through a mechanism of action similar to that of
paclitaxel, namely through induction ~ of tubulin
polymerization and stabilization of microtubules [56e]. In
the latter report, the biological effects of the epothilones
were compared to those of paclitaxel, and epothilones were
shown to be equipotent and exhibit kinetics similar to
paclitaxel in inducing tubulin polymerization in vitro and in
stabilizing microtubules in cultured cells. In addition,
epothilones were shown to competitively inhibit [PH]-
paclitaxel binding to microtubules, with a similar 50%

—

inhibitory concentration and slope to unlabeled paclitaxel
[569,58]. Epothilones also cause cell cycle arrest at the G,/M
transition, leading to cytotoxicity, similar to paclitaxel.

In contrast to paclitaxel, however, epothilones retain a much
greater toxicity against P-glycoprotein—expressing multiple
drug resistant (MDR) cells [56e]. This characteristic suggests
that epothilones as antineoplastic agents could provide an
important advantage over paclitaxel. In addition, in vivo
experiments in nude mice bearing human tumors showed
that although epothilones performed similarly to paclitaxel
in sensitive tumor xenografts (CCRF-CEM  human
lymphoblastic T cell leukemia, MX-1 human mammary and
HT-29 colon tumor), their effects were clearly superior
against MDR tumors (CCRF-CEM/paclitaxel ~human
lymphoblastic T cell leukemia and MCF-7/ADR human
mammary adenocarcinoma) [669,67,68,69].

Epothilones were also found to retain activity against a
panel of human ovarian carcinoma cell lines, resistant to
paclitaxel due to acquired B-tubulin mutations which impair
paclitaxel/ tubulin interaction [58,700e,710s]. This result
strongly suggests that although epothilones competitively
inhibit paclitaxel binding to microtubules, the mutations
identified in these paclitaxel-resistant cell lines, at residues
p270™>%" and B364**™, are not as important for
epothilones' binding as they are for paclitaxel binding.
Indeed, the recently identified atomic model of a/B-tubulin
with bound paclitaxel [72¢] and its docking into a 20 A map
of the microtubule [73ee] shows that p270™ is located in the
paclitaxel binding pocket and its side chain is stacked
against the C3' phenyl group of paclitaxel. The crystal
structure of epothilones bound to tubulin, however, has not
yet been elucidated.

A recent report provides additional insight into the nature of
epothilones’ binding onto tubulin, by identifying B-tubulin
mutations which confer resistance to epothilones and impair
their binding to tubulin [74ee]. In addition, in ‘the same
report, a common pharmacophore shared between taxanes
and epothilones is identified, despite their apparent
structural dissimilarity, and modeling of epothilone binding

onto tubulin is achieved [74ee].

Soon after the recognition of the biological importance of the
epothilones, the total synthesis of the natural epothilones
was achieved [67,71e¢]. This synthesis paved the way for the
chemical synthesis of a large number of designed
epothilones for chemical biology studies. Thus, the design
and chemical synthesis of epothilone libraries allowed the
biological evaluation of a large number of epothilone
analogs providing invaluable information regarding the
structure-activity ~ relationships of these promising
compounds.

In addition to the chemical synthesis of the epothilones, a
novel method of obtaining sufficient amounts of natural
epothilones has been recently reported [75,76e]. In these
reports, the gene cluster responsible  for epothilone
biosynthesis in Sorangium cellulosum has been cloned and
sequenced and its heterologous expression in a surrogate
microbial host (Streptomyces coelicolor, CH999) provided a
plentiful supply of epothilones. The availability of the
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cloned epothilone gene cluster and a plasmid-borne
expression system should facilitate the generation, by
combinatorial ~ biosynthesis approaches, of designer
epothilones with superior characteristics.

Discodermolide

Discodermolide is a potent antitumor compound derived from
the Caribbean deep-water sponge Discodermia dissoluta.
Discodermolide was isolated and characterized in 1990 [77]
and was originally described to have immunosuppressive
activity  [78,79]. The microtubule-stabilizing  activity of
discodermolide was discovered through studies using
computational methods to identify novel compounds with
structural analogy to colchicine site inhibitors [57s].
Discodermolide is more potent than paclitaxel and
competitively binds at the same site on tubulin.
Discodermolide retains activity against paclitaxel-resistant
cells that either overexpress Pgp or harbor B-tubulin mutations
[62,70ee]. Interestingly, although discodermolide competitively
inhibits paclitaxel binding on tubulin, a recent report
demonstrates that paclitaxel and discodermolide represent a
synergistic drug combination in four different human cancer
cell lines [80e] (for comments see [81]). This finding, together
with observations that discodermolide retains activity against
paclitaxel- and epothilone-resistant cell lines [7000,7400],
harboring distinet B-tubulin mutations that impair paclitaxel-
or epothilone-interaction with tubulin, suggest that the
mechanisms of action of the two drugs, namely paxlitaxel and
discodermolide, are distinguishable.

Eleutherobins/Sarcodictyins

Eleutherobins and Sarcodictyins are marine natural
products isolated from the corals Eleutherobia aurea and
Sarcodictyon roseum, respectively [82,83]. Eleutherobins and
sarcodictyins, like paclitaxel, stabilize microtubules, induce
microtubule bundle formation in cells and arrest cells at
mitosis [59e,84]. Pgp-expressing resistant cell lines are cross-
resistant to eleutherobins and sarcodictyins. Similarly,
eleutherobins retain cross-resistance against epothilone-
resistant cells due to acquired B-tubulin mutations, while
sarcodictyins show increased activity in these resistant cells
compared to sensitive parental cells [74ee]. This finding
suggests once more, that microtubule-active agents with
similar mechanisms of action possess slightly different
properties, which could allow their effective combination
even in cases where drug-resistance emerges.

Laulimalide

Laulimalide and isolaulimalide are marine natural products
isolated from the sponge Cacospongia mycofijiensis, collected
in Indonesia, Vanuatu and Okinawa. Both compounds are
18-membered macrocyclic lactones, with isolaulimalide
being a laulimalide rearrangement product. Both
compounds were initially isolated on the basis of their
toxicity, but their mechanism of action was not elucidated
[85,86]. A number of international research centers are
currently investigating these agents. A recent report showed
that laulimalide and isolaulimalide are paclitaxel-like
stabilizers of microtubules that cause alterations in both
interphase and spindle microtubules [61e]. In addition, they
are poor substrates of P-glycoprotein. Among the five

groups of known MIAs with a paclitaxel-like mechanism of
action, laulimalide most closely resembles the epothilones.
This similarity seems to translate to similar activities.

Resistance to drugs which target tubulin and
microtubules

Several mechanisms of resistance to drugs which target
microtubules have been proposed, including (1)
overexpression of MDR-1/P-glycoprotein; (2) altered
expression of B-tubulin isotypes; (3) intrinsic or acquired
mutations in p-tubulin, and (4) expression of novel genes.

Increased expression of MDR-1/P-glycoprotein as a
mechanism of resistance has been extensively documented
[87]. Numerous studies have demonstrated that both the
vinca alkaloids and the taxanes are ‘good P-glycoprotein
substrates’ [88,89,90] and cell lines selected for resistance to
these agents have been shown to overexpress P-glycoprotein
[91,92¢]. In addition, overexpression of the multidrug
resistance protein (MRP) can confer resistance to the vinca
alkaloids, but not the taxanes, while expression of the sister
gene of Pgp (sPgp) has been implicated in paclitaxel
resistance [93,94,95].

Altered expression of B-tubulin isotypes has also been
advanced as a potential mechanism of drug tolerance, most
prominently for paclitaxel. However, despite extensive
circumstantial evidence, the importance of functional
differences among B-tubulin isotypes is uncertain. Whether
differential expression of different isotypes can modulate
microtubule function and a cell's response to drug is even
less certain. For paclitaxel, this latter question has been
addressed most aggressively, motivated largely by several
studies that reported acquired changes in B-tubulin isotype
expression in paclitaxel-resistant cells and in paclitaxel-
resistant ovarian tumors [2,96-99]. While the jury is still out
on this important question, in vitro evidence suggests that
isotype composition may affect paclitaxel sensitivity.
Paclitaxel was shown to suppress the dynamics of
microtubules composed of purified ofIlI- and oflV-tubulin
7-fold less strongly than control microtubules, suggesting
that overexpression of Il and IV isotypes may lead to
paclitaxel resistance [100e]. In addition, it has been reported
that tubulin lacking the BIII isotype assembles i vitro into
microtubules twice as rapidly as does normal brain tubulin
[101}.

Accumulating evidence indicates that mutations in B-tubulin
can also confer resistance. As with the studies examining the
expression of B-tubulin isotypes, the data is more extensive
for paclitaxel. However, similar data has been obtained for
the epothilones, and indirect evidence exists for other
agents. The most straightforward mutations described
involve acquired mutations at the paclitaxel binding site in
B-tubulin, namely mutations at residues $270, B274, and
3282 [70es, 74ee]. According to the atomic model of o/p-
tubulin with bound paclitaxel [73s] and its docking into a
20A map of the microtubule [726], these residues have been
localized to the taxane binding site, where they confer
resistance to the taxanes, and also to the epothilones, albeit
to varying extent. Supporting and further extending these
findings in the clinic, preliminary clinical data suggests that
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p-tubulin mutations may also confer paclitaxel resistance in
patients with non-small cell lung cancer [55ee]. Mutations
have also been described at sites other than the taxane
pinding site, leading to the interesting proposal that
resistance in these cases is a result of alterations in
microtubule stability [102, 103e]. According to this model,
such mutations can result in either a ‘hypostable’ or
’hyperstable’ microtubules with differential sensitivity to
MT-destabilizing or stabilizing agents.

Finally, recognizing the complex nature of drug interactions,
it is likely that as yet undefined mechanisms of resistance
will be identified. The identification of genes whose
expression is altered in drug-resistant cell lines represents a
first step in this process [104, 105].

Conclusion

The clinical success of microtubule-interactive agents has
allowed us, in the last fifty years, to learn what nature
figured out long ago: tubulin and microtubules are excellent
drug targets. For no other single target, including DNA, has
a more diverse group of agents been successfully developed.
The questions we must then ask are: [1] ‘Why are tubulin
and microtubules such good targets?’ and [2] ‘Can other
agents be found to target microtubules, and will they add
anything to our existing armamentarium?’.

Why are tubulin and microtubules such good targets? The
simple answer is that they are involved in critical cellular
functions, the most dramatic of which, especially for cancer
cells, is cell division. However, one can argue that a myriad
of other proteins are similarly involved in cell division, yet
to date ‘natural products’ targeting these have not been
identified, suggesting that at least ‘nature’ has not
considered them as essential. We believe several properties
make tubulin/microtubules ideal targets: [i] A lack of
redundancy. Unlike many other proteins/systems for which
redundancy exists, cells do not have a redundant
microtubule  system. Consequently, interference with
microtubule function is likely to result in a cellular effect. In
contrast, enzymes often have overlapping activities, or
alternate pathways can be utilized. [ii] Microtubules are
intrinsically dynamic and this is essential for their function.
This ‘dynamism’ is best manifested in mitotic cells, where
the rapid turnover of the tubulin/microtubule pools
provides an excellent opportunity to interfere with this
process. In this regard it is not surprising that the principal
offect of MIAs is most likely a result of interfering with
turnover. An important corollary of this is that the percent
of target sites occupied need not be large for a maximum
effect to be observed. When one is dealing with a protein
whose ‘structure’ can turn over in as little as 15 s, it is
sufficient to have a drug on one of every 200 potential target
sites, as occurs with paclitaxel. This is in contrast to an
enzyme, for example, where inhibition of 1 in every 200
molecules would be inconsequential; indeed where anything
less than near complete inhibition would be insufficient. [iii]
Several sites on microtubules are valid targets. Unlike
enzymes, for example, which in many cases require the
active site to be the target, the binding sites on tubulin and
the microtubules differ greatly among the various classes of
agents. [iv] Microtubules are involved in many basic cellular
functions. Consequently, interfering with microtubules

results in a myriad of other effects. In dividing cells, cell
division is impaired, while in resting cells intracellular
trafficking and the supporting structure are impacted.

Can other agents be found to target microtubules, and will
they add anything to our existing armamentarjum? One can
safely predict that additional agents targeting tubulin will be
discovered and that some will likely become part of our
clinical armamentarium. For example, an agent targeting the
colchicine site has never been successfully developed as an
anticancer agent, and it is likely that one will. It is also
possible that new agents can be ‘designed’ to target
microtubules, especially interphase microtubules. While
concentrations which can alter the microtubule mass can be
achieved clinically, interference with the mitotic spindle
appears to be the principal effect of these agents. Indirect
evidence for this includes observations both in vitro and in
patients, that these agents are active principally against
actively dividing cells. Although this may reflect a cell's
ability to tolerate interference with the interphase functions
of microtubules, it more likely reflects the less dynamic
nature of interphase microtubules. Treadmilling and
dynamic instability are not as crucial during interphase, as
evidenced by the fact that exchange of the tubulin pool can
sometimes take several hours. During this phase of the cell
cycle, a stable microtubule on which intracellular trafficking
can occur is likely to be more important. In this case, a low
occupancy of target sites is less likely to be effective or even
ineffective. We may come to understand that in interphase
cells, targefing the microtubule-motor proteins  which
mediate microtubule-based trafficking, may be more
effective. Such an approach may help make these agents
active against less rapidly dividing cells, albeit at the risk of
greater normal tissue toxicity.

In summary, the clinical success of paclitaxel has led to a
wealth of new scientific knowledge regarding the importance
of the tubulin/microtubule system as a target for . cancer
chemotherapy as well as the need to identify novel tubulin-
active agents. While we remain in awe of nature's exquisite
molecular engineering abilities, we hope that as we gain more
knowledge and insight into the molecular mechanisms of
action of microtubule-interactive compounds, we will be able
to design ‘better’ novel chemotherapeutic agents or find
‘better’ ways to use the existing ones.
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